
NotSoBASIC is based upon Sinclair QL SuperBASIC.

This document describes the differences between the language definition of SuperBASIC as
described in the Sinclair QL User Manual and NotSoBASIC.

Language levels.

Because this language has the purpose of being both a beginner's language which allows for
growth and a fully fledged data processing language the system has two modes of operation,
"Beginner" and "Standard". The only difference between them is that in Beginner mode the
language enforces such things as sequential line numbers, which can act as "training
wheels" for those starting off, and will disable a small number of potentially problematic
functionality. In other words, the language will look very much like 1980s BASICs. It is a
complete sub-set of the Standard mode.

Standard mode removes the need for sequential numeric labels and enables all features.

By default when started in interactive mode the language will be in Beginner mode. This
will be able to be changed in the configuration file.

If run in non-interactive mode then Standard mode is the default as it is envisaged that
this will only be used by experienced users.

Including other files. (Standard mode only)

So as to make maintenance of programs more easy and to help with a semi-modular approach
to programming, programmers can include other files into the program. These may contain
structure definitions or procedures. for this purpose two statements can be used:

INCLUDEPATH "URI"[,"URI"[…]]

This sets the places the interpreter will look for the files to include using the INCLUDE
statement, e.g.

INCLUDE support_procs.bas

It is suggested that there is only one INCLUDEPATH statement used in any one program and
that it appears at the very beginning so as to aid maintainability.

Labels.

Labels appear as the first item on a line and mark a line in the code for future reference
by GOTO and other programming constructs.

In Beginner mode every line must start with a numeric label which has a value higher than
any previous labels.

In Standard mode labels are optional and must have a name starting with either a number or
a '-'. Labels may only contain alphanumeric characters and the underscore character, '_'.

Variables.

Variable names MUST start with a alphabetic character and can only contain alphabetic,
numeric and underscore characters. A suffix can be appended so as to give the variable a
specific type, e.g. string. Without a suffix character the variable defaults to a floating
point value.

Suffixes are:

$ string

% integer
@ pointer

By default a floating point values are held and processed as single precision numbers and
conform to IEEE floating point standards. Integer values are held using the natural
"signed int" size of the architecture.

However, the "PRECISION" statement at the beginning of the program can be used to change
this behaviour. Using the argument "HIGH" will change the size of both integer and
floating point storage. Integer values will be stored as "signed long" and floating point
values as double precision. Using the argument "STANDARD" will enforce the lower precision
state.

Pointers are special variables, they reference other variables or procedures. If evaluated
as a number value in an assignment they will give the number of references the variable it
refers to currently has. If evaluated as a string in an assignment then it returns a
description of the type of variable or procedure it references.

If a pointer is passed to a procedure and within the procedure a local variable is
assigned to it then upon the return from the procedure the value is undefined.

Special constants and variables.

ARGC%, ARGV$()

When a program is started any arguments given after the RUN or LRUN command are passed in
the array ARGV$() and the number of arguments passed can be found in the ARGC% integer
variable. In non-interactive mode these are the arguments given on the command line.

ENVVAR%, ENVVAR$()

Any environment variables set by the system before the interpreter began can be found in
the ENVVAR$() array. The size of the array is set in the ENVVAR% integer variable.

NaN

This is a special constant value which can be used to test if a variable contains an
invalid floating point value, such as that returned by the square root of -1.

Pi

This special constant holds the value of Pi to the highest precision of the current
floating point format.

Compound variables.

Compound variables (structures) can be created using the "DEFine STRUCTure" command to
create a template and then creating special variables with the "STRUCTure" command:

DEFine STRUCTure name
Varian
[...]
END STRUCTure

STRUCTure name varnam[,varnam]

An array of structures can also be created using the STRUCTure command, e.g.

STRUCTure name varnam(3)

The values can be accessed using a "dot" notation, e.g.

DEFine STRUCTure person
name$
age
DIMention vitals(3)
END STRUCTure

STRUCTure person myself, friends(3)

myself.name$ = "Stephen"
myself.age = 30
myself.vitals(1) = 36
myself.vitals(2) = 26
myself.vitals(3) = 36

friends(1).name$ = "Julie"
friends(1).age = 21
friends(1).vitals(1) = 36
friends(1).vitals(2) = 26
friends(1).vitals(3) = 36

As with standard arrays, arrays of structures can be multi-dimentional.

Structures can contain any number of standard variables, static arrays types and other
structures. However, only structures defined BEFORE the one being defined can be used.
Structure definitions are parsed before execution of the program begins. Structure
variable creation takes place during execution.

Expression evaluation.

An expression is a set of mathematical or string operations. Values can be immediate
values, variables or constants. Operators include the comparison '=' which returns either
the value zero if the values are non-equal or one if they equate.

During program execution an expression can be given as a string to the EVAL() function
which will then evaluate the expression and return the value. If the expression is
syntactically erroneous then the BADEXPSYNTAX exception is raised. By default this will
cause the program to abort.

Loops.

FOR/NEXT/END FOR:

FOR assignment (TO expression [STEP expression] | UNTIL expression | WHILE
expression) [NEXT assignment]
..
[NEXT [var]]
..
END FOR [var]

The assignment flags the variable as the loop index variable. Loop index variables are
normal variables.

The assignment and the evaluation of the assignment expression happen only once, when
entering the loop. The test expressions get evaluated once every trip through the loop at
the beginning. If the TO or UNTIL expressions evaluate to zero at the time of loop entry
the commands within the loop do not get run.

The STEP operator can only be used if the loop index variable is either a floating point
variable or an integer. The expression is evaluated to a floating point value and then
added to the loop index variable. If the loop index variable is an integer then the value
returned by the expression stripped of its factional part (as with ABS()) before being
added to the variable.

WHILE/END WHILE:

WHILE expression [NEXT assignment]
...
[CONTINUE]
...
END WHILE

Equivalent to a FOR loop without an assignment using the WHILE variant e.g.

x = 10
WHILE x > 3 NEXT x += y / 3
...
END WHILE

is equivalent to

FOR x = 10 WHILE x > 3 NEXT x += y / 3
...
END FOR

DO/UNTIL:

DO
...
[CONTINUE]
...
UNTIL expression

The commands within the loop are run until the expression evaluates to a non-zero value.

Functions and procedures.

A function is merely a special form of a procedure which MUST return a numeric value. The
suffix of a procedure determines its type, in the same way as variable names.

DEFine PROCedure name[(parameter[,parameter[...]])]
...
[RETURN expression]
END PROCedure

DEFine FUNction name[(parameter[,parameter[...]])]
...
RETURN expression
END FUNction

Parameters are local names with reference the passed values by reference. This means that
any modification of the parameters within the procedure will change the value of any
variables passed to it.

Variables created within the procedure will be local to the current incarnation, allowing
recursion. Variables with global scope are available within procedures but will be
superseded by any local variables with the same name.

Mathematical operations.

Unless "PRECISION HIGH" has been used at the beginning of the program then all floating
point operations will be done using IEEE single precision operations.

Unless the OVERFLOW or UNDERFLOW exceptions are set to be caught such exceptions will be
ignored. All other floating point exceptions will cause the termination of the program
unless caught using the "ON EXception" statement giving a procedure to call.

Device and file access.

Files and other devices are accessed via a standard URI and not the restrictive SuperBASIC
format. This allows direct access to files on remote network resources, e.g.

LOAD "ftp://username:password@ftp.somewhere.net/pub/somecode.bas"

Comments.

In addition to the "REMark" statement a comment line can begin with the '#' character.
This allows the use of the UNIX/Linux '#!' automatic interpreter selection to start a
program in non-interactive mode.

Exceptions.

Unlike the partially implemented "ON ERROR" statement in SuperBASIC the "ON EXception"
statement allows a more fine grained approach to exceptions generated by the system or the
program. The general form of the statement is:

ON EXception exceptionname procname|IGNORE|ABORT

When an exception occurs, such as a division by zero or a syntactical error in a
expression given to EVAL() the language's exception handler will by default call its own
handling function or exit the program. The "ON EXception" statement allows the programmer
to change the default action for the named exception type and either pass processing to a
named procedure, ignore the exception or abort the program.

If an exception occurs and processing is passed to a procedure upon return from the
procedure execution continues from the statement after that which caused the exception.

Some exceptions cannot be ignored but can be handled.

Table of exceptions:

Exception name Can be ignored Can be redirected Default

Maths:

OVERFLOW * * ignore
UNDERFLOW * * ignore
DIVBYZERO * * abort

General:
BADSUBSCRIPT * abort
BADEXPSYNTAX * abort

